KARYOTYPE TRAITS IN ROSA NITIDULA BESSER

ELENA TRUTA ${ }^{1 *}$, GABRIELA VOCHITA ${ }^{1}$, CRAITA MARIA ROSU ${ }^{1}$, CIPRIAN MANZU ${ }^{2}$, GOGU GHIORGHITA ${ }^{3}$, IOAN VIOREL RATI ${ }^{3}$

Keywords: Rosa nitidula Besser, karyotype, mixoploidy
Abstract: The knowledge of karyotype characteristics of Rosa genus is important because this taxonomic group shows an impressive phenotype, genotype and ecological variability and plasticity. In Caninae section, the degree of complexity is amplified by the special chromosome constitution - presence of two genome types (allopolyploid status) and of heterogamous, unbalanced meiosis. Cytogenetic analysis of Rosa nitidula Besser genotype evidenced the mixoploidy state, namely the coexistence - in the meristematic apexes of the same individual - of different chromosome numbers ($2 \mathrm{n}=2 \mathrm{x}=14$ and $2 \mathrm{n}=5 \mathrm{x}=35$). The chromosome size is small ($1.22-2.50 \mu \mathrm{~m}$, with limits of variability comprised between 1.21-2.56 $\mu \mathrm{m}$), and length of haploid chromosome complement is $12.09 \mu \mathrm{~m}$. The karyotype formula of diploid cells of R. nitidula Besser is $2 \mathrm{n}=2 \mathrm{x}=14=12 \mathrm{~m}+2 \mathrm{sm}$.

INTRODUCTION

Rosaceae family comprises approximately 100 genera and 1000 species, some of them of great economical importance. According to Kalkman (cf. Dickinson et al., 2007), this family has 85 genera and about 2000 sexual species, but Leus (2005) sustains the existence of 3000 species belonging to the Rosaceae family. At least 32 genera show euploid increases of chromosome number. The complexity of Rosa genus, containing about 200 species widely distributed throughout the Northern Hemisphere, is conferred by the impressive phenotype, genotype and ecological variability and plasticity due to some evolutive processes like hybridisation, introgression etc. All these factors are related and interconditionable: hybridisation determined asymmetric meioses, the unequal and asymmetric meiotic distribution of the chromosomes (,,canina meiosis") leads to gametes with unequal number of chromosomes (egg cell: $2 n=3 x, 4 x, 5 x=21,28$, 35; pollen grain $2 n=1 x=7$), and the heterogamy results in the asymmetrical inheritance - mainly matroclinal - of the characters (Wissemann, 2005, 2006). Breeding of Rosa species is difficult because of high level of heterozygosity, differences in ploidy levels, particular problems of sexual reproduction and seed germination.

The objectives of this study are the establishment of chromosome diploid number, the analysis of the morphological traits of somatic chromosomes, and the construction of karyotype.

MATERIAL AND METHODS

For cytogenetic analysis, seeds of Rosa nitidula (Bistrita 2 genotype) were placed on filter paper moistened with distilled water. The germination was carried out at $22^{\circ} \mathrm{C}$, in dark. The roots ($10-15 \mathrm{~mm}$ in length) were treated with 8-hydroxyquinoline ($0.002 \mathrm{~mol} / \mathrm{L}$), for 4 h and then fixed in ethanol-acetic acid mixture (3:1) for 24 h at room temperature. The plant material was stored in refrigerator, at $4^{\circ} \mathrm{C}$, in 70% alcohol. For microscopic observations, the root tips were hydrolyzed in 50% hydrochloric acid and stained with modified carbol fuchsin solution. The squash preparations were obtained in 45% glacial acetic acid and they have been analyzed at Novex Holland K-range microscope with $20 x$ objective; the cells with well-spread metaphase chromosomes were then photographed at Nikon Eclipse 600 microscope with digital camera Cool Pix Nikon, 1600x1200 dpi, 100x objective. The images were processed by Adobe Photoshop programmer.

Chromosome measurements included length of individual chromosomes (C), long arm length (L), short arm length (S), arm ratio, $\mathrm{r}(\mathrm{r}=\mathrm{L} / \mathrm{S})$, centromeric index, $\mathrm{CI}(\mathrm{CI}=\mathrm{S} / \mathrm{C} \times 100)$, and the relative length of each chromosome, \% (C/length of haploid complement x 100). Karyotype was performed according to Levan et al. (1964) nomenclature. The chromosome homology and the establishment of the chromosome types were assigned on the basis of centromere position, respectively on CI and r values: the chromosomes are metacentric ($\mathrm{r}<1.70, \mathrm{CI}=37.5-50.0$), submetacentric ($\mathrm{r}=1.70-2.99, \mathrm{CI}=37.5-25.0$), subtelocentric ($\mathrm{r}=3.00-6.99, \mathrm{CI}=25.0-12.5$), and telocentric ($\mathrm{r}=7.00-\infty, \mathrm{CI}<12.5$). In karyotypes, the chromosome pairs have been ordered in decreasing size.

RESULTS AND DISCUSSIONS

The karyotypes, which describe the complement phenotypes in terms of number, size, arm ratio, and other chromosome specific features, are dynamic structures evolving through
numerical and structural changes. The above mentioned parameters may differ even between closely related taxa.

Rosa seeds often take two years to germinate. They are characterized by a complex and strong state of dormancy and do not exist efficient and infallible methods to quicken the germination, even if all favourable conditions are ensured. The factors making difficult the seed germination is the hard woody pericarp and the presence of some chemical inhibitors. To surpass the double dormancy, the cold stratification, sometimes accompanied by chemical scarification (with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$) or alternation of seed exposure to high and low temperatures or treatment with gibberellic acid are recommended. Some studies on dog-roses evidenced a superior seed germination efficiency after thermic treatment (12 weeks at $20^{\circ} \mathrm{C}$, followed by 12 weeks at $5^{0} \mathrm{C}$), comparatively with exclusively cold exposure (24 weeks, $5^{\circ} \mathrm{C}$). Despite of large palette of the treatments applied to optimize the germination efficiency, the results are not satisfactory.

In Caninae section, the degree of complexity is amplified by the special chromosome constitution - presence of two genome types (allopolyploid status) and of heterogamous, unbalanced meiosis (Uggla, 2004, De Cock, 2008). The principal methods used to analyse the ploidy status, reproduction mode and genetic constitution of the plants resulted from interspecific crosses are flow cytometry and molecular markers (RAPD, microsatellites).

Two groups naturally exist in Rosaceae family: one (subf. Rosoideae) with $\mathrm{x}=7,8,9$, another (subf. Pomoideae) having x=17. Approximately 200 species are included in Rosa genus; for 147 of them the chromosome number was established (Crane and Byrne 2003, cf Roberts et al., 2008). The Rosa genus exhibits a typical polyploid series with a basic chromosome number of 7 (from $2 n=2 x=14$ to $2 n=8 x=56$). The chromosome numbers are multiple of basic number $x=7$. Aneuploidy is rare (Kroon and Zeilinga, 1974).

The chromosome variability in family and genus is very large. Diploid species $(2 \mathrm{n}=2 \mathrm{x}$ $=14)$ are R. arvensis, R. sempervirens and R. rugosa, whereas R. gallica, R. glauca, R. pendulina, R. pimpinellifolia, R. villosa are tetraploid $(2 \mathrm{n}=4 \mathrm{x}=28)$. R. canina, R. agrestis, R. elliptica, R. micrantha, R. montana, R. rubiginosa, R. sicula, R. tomentosa have pentaploid constitution $(2 \mathrm{n}=5 \mathrm{x}=35)$. R. pouzinii and R. trachyphylla are hexaploid species $(2 \mathrm{n}=6 \mathrm{x}=42)$, in this group some authors including also Rosa agrestis. As octoploid species $(2 \mathrm{n}=8 \mathrm{x}=56)$ is reported R. acicularis. Even intraspecific variation was evidenced in R. sherardii, R. mollis and R. micrantha in which shrubs showing ploidy degrees of $4 \mathrm{x}, 5 \mathrm{x}$ and 6 x have been described. Polyploidy has long been recognized as an important force in evolutionary diversification and is one of the most important cytogenetic mechanisms in plant evolution and rapid speciation (Stebbins, 1971; Grant, 1981; Levin, 2002, cf. Jian et al., 2011).

In R. canina x R. pendulina „Everest" hybrid series, out of plants with expected 49 somatic chromosomes, a plant with 77 chromosomes was identified. It seems that this increased number is due to chromosome doubling during development of embryo sac at a moment when reduction has already taken place (Zeilinga, 1969).

Except Caninae section, all rose species have in most cases 2 x or 4 x , with a normal Mendelian meiosis. Generally, the species of Caninae section are pentaploid, although tetraploid $(2 n=4 x=28)$ and hexaploid species $(2 n=6 x=42)$ have been found (Henker, 2000, cited by De Cock, 2008). Organisms with canina meiosis are named hemisexual (Nybom et al., 2004).

Fig. 1. Metaphase and karyotype in Rosa nitidula (Bistrita 2 genotype)

$\begin{gathered} \text { Chromo } \\ \text { some } \\ \text { pair } \end{gathered}$	Chromoso me type	Total length		Long arm		Short arm		Arm rat:o	Arm difference	Centromeric index	Relative length
		$\mu \mathrm{m}$	range	$\mu \mathrm{m}$	range	$\mu \mathrm{m}$	range				
I	m	2.50	2.43-2.56	1.36	1.32-1.40	1.14	1.11-1.14	1.20	0.19	45.50	20.65
II	m	2.24	2.21-2.26	1.28	1.26-1.29	0.96	0.95-0.97	1.33	0.30	42.92	8.49
III	m	1.75	1.74-1.75	1.02	1.01-1.04	0.72	0.73-0.72	1.42	0.32	41.29	4.44
IV	m	1.66	1.62-1.70	0.96	0.93-0.98	0.70	0.69-0.72	1.36	0.23	42.32	3.74
V	m	1.38	1.36-1.40	0.74	0.72-0.75	0.64	0.63-0.65	1.15	0.11	46.55	1.41
VI	sm	1.35	1.34-1.37	0.86	0.86-0.87	0.49	0.48-0.50	1.75	0.38	36.31	1.19
VII	m	1.22	1.21-1.23	0.72	0.70-0.74	0.50	0.50-0.51	1.43	0.20	41.10	0.11
Length	f haploid ement	12.09									

Fig. 2. Rosa nitidula - pentaploid $(2 \mathrm{n}=5 \mathrm{x}=35)$ metaphase (\mathbf{a}) and prometaphases $(\mathbf{b}, \mathbf{c}, \mathbf{d})$
This kind of meiosis determines unequal, asymmetric distribution of chromosome in gametes $(2 n=1 x=7$ for pollen grain, $2 n=3 x, 4 x, 5 x=21,28,35$ for megaspore $)$, fact resulting in matroclinal inheritance of the characters: $4 / 5$ of nuclear genome is provided by maternal parent, only $1 / 5$ coming from paternal parent (Ritz and Wissemann, 2003). Although this system is complicated, the dog-roses maintain a mixed mating type, ranging from facultative apomixis, selfpollination, geitonogamy (the pollination of a flower stigma with the pollen from other flower on the same plant), to outbreeding reproduction (Wissemann et al., 2007).

In Rosa genus, the studies concerning chromosome number, karyotype and frequency of meiotic configurations are numerous (Liu and Li, 1985; Subramanian, 1987; Ma and Chen, 1991, 1992; Ma et al., 1997, cf. Fernández-Romero et al., 2001), but no analysis of chromosome characteristics of R. nitidula Besser we found. Based on arm ratio and chromosome length values, the authors established that in Rosa genus the karyotypes are symmetric and that genomic uniformity exists in this genus.

In Rosa nitidula genotypes, the primary cytogenetic analysis evidenced the mixoploidy state, namely the existence - in the meristematic apexes of the same individual - of different chromosome numbers. The metaphases presented in Fig. 1 and 2 belong to the same individual and confirm the coexistence in the same tissue of the cells with different ploidy levels: diploid $(2 n=2 x=14)$ and pentaploid ($2 n=5 x=35$). Different ploidy levels ($4 x, 5 x, 6 x$) show also other Rosa species such as R. sherardii, R. mollis, R. micrantha. It seems that the mixoploidy, namely the coexistence of different ploidy levels in the same individual, is more often present in genera
having small chromosomes and contributes to the increase of adaptive potential of respective plants, especially in unfavourable environment conditions.

As Table 1 shows, the size of chromosomes in R. nitidula ranges from $1.22 \mu \mathrm{~m}$ to 2.50 $\mu \mathrm{m}$, with limits of variability comprised between $1.21-2.56 \mu \mathrm{~m}$; the length of haploid chromosome complement is $12.09 \mu \mathrm{~m}$. As other authors reported, rose chromosomes are small and difficult to observe through cytology (Leus, 2005). The chromosomes showed a relative length ranging from $10.11 \mu \mathrm{~m}$ (pair VII) to $20.65 \mu \mathrm{~m}$ (pair I). The average values of arm ratio and centromeric index allowed that except one pair (VI), which have submedian placed centromere (sm), the others (pairs I-V and VII) are metacentric chromosomes with median placed centromere (m).

The karyotype formula of diploid cells of R. nitidula Besser is $2 \mathrm{n}=2 \mathrm{x}=14=12 \mathrm{~m}+2 \mathrm{sm}$. Because of small chromosome size and of the difficulty in obtainment of sufficient metaphases with satisfactory chromosome contraction and spreading, in this moment we can not made remarks about the real nature of the ploidy in the case of 5 x state and thoroughgoing studies are necessary to clear this problem. For example, for R. praelucens Byhouwer decaploid $(2 n=10 x=70)$ it was established to be an allopolyploid, respectively an interspecific hybrid (interspecific hybridization is common in Rosa genus). In this polyploid tree, like in R. nitidula, according to Lima-de-Faria (1980) classification, the chromosomes are also small (under $4 \mu \mathrm{~m}$, respectively ($1.77-3.78 \mu \mathrm{~m}$).

The small size and the morphostructural characteristics, as well as the presence of chromosomes only of m and sm type are the principal arguments to sustain that the karyotype of Rosa nitidula Besser is relatively little evolved, with a high degree of symmetry.

CONCLUSIONS

In analyzed Rosa nitidula Besser genotype, the mixoploidy was evidenced, namely the coexistence of diploid $(2 n=2 x=14)$ and pentaploid $(2 n=5 x=35)$ cells.
Chromosomes are small ($1.22-2.50 \mu \mathrm{~m})$.
Only one chromosome pair has submedian placed centromere (sm), the other six have metacentric chromosomes with median placed centromere (m).
The karyotype formula of diploid set is $2 n=2 x=14=12 m+2 s m$; the karyotype has a high degree of symmetry.

REFERENCES

De Cock, K. 2008. Genetic diversity of wild roses (Rosa spp.) in Europe, with an indepth morphological study of Flemish populations. PhD Thesis, Faculty of Bioscience Engineering, Ghent University.

Dickinson, T. A., Lo, E., Talent, N., (2007): Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst. Evol., 266, 59-78.

Fernández-Romero, M. D., Torres, A. M., Millán, T., Cubero, J. I., Cabrera, A., (2001): Physical mapping of ribosomal DNA on several species of the subgenus Rosa. Theor. Appl. Genet., 103, 835-838.

Jian, H., Zhang, H., Tang, K., Li, S., Wang, Q., Zhang, T., Qiu, X., Yan, H., (2010): Decaploidy in Rosa praelucens Byhouwer (Rosaceae) Endemic to Zhongdian Plateau, Yunnan, China. Caryologia, 63(2), 162-167.

Kroon, G. H., Zeilinga, A. E., (1974). Apomixis and heterogamy in rose rootstocks (Rosa canina L.). Euphytica, 23(2), 345-352.

Leus, L. 2005. Resistance breeding for powdery mildew (Podosphaera pannosa) and black spot (Diplocarpon rosae) in roses. PhD. Thesis, Faculty of Bioscience Engineering, Ghent University, 176 pp.

Levan, A., Fredga, A., Sanderberg, A. A., (1964): Nomenclature for centromeric position in chromosome. Hereditas, 52, 201-220.

Elena Truta et al - Karyotype traits in Rosa nitidula besser

Lima-de-Faria, A., (1980): Classification of genes, rearrangements and chromosomes according to the chromosome field. Hereditas, 93, 1-46.

Nybom, H., Esselink, G. D., Werlemark, G., Vosman, B., (2004): Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L . Sect. Caninae DC. Heredity, 92, 139-150.

Ritz, C. M., Wissemann, V., (2003): Male correlated non-matroclinal character inheritance in reciprocal hybrids of Rosa section Caninae (DC.) Ser. (Rosaceae). Plant Syst. Evol., 241, 213-221.

Roberts, A. V., Gladis, T. H., Brumme, H., (2008): DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels. Plant Cell Rep., 28(1), 61-67.

Uggla, M. 2004. Domestication of wild roses for fruit production. Doctoral thesis, 34 pp
Wissemann, V., (2005): Evolution by hybridisation. The influence of reticulate evolution of biosymmetrical patterns and processes in plants. Theory Biosci, 123, 223-233.

Wissemann, V., Gallenmüller, F., Ritz, C., Steinbrecher, T., Speck, T., 2006. Inheritance of growth form and mechanical characters in reciprocal polyploid hybrids of Rosa section Caninae - implications for the ecological niche differentiation and radiation process of hybrid offspring. Trees, 20, 340-347.

Wissemann, V., Riedel, M., Riederer, M., 2007. Matroclinal inheritance of cuticular waxes in reciprocal hybrids of Rosa species, sect. Caninae (Rosaceae). Plant Syst. Evol., 263, 181-190.

Zeilinga, A. E., 1969. A case of duplication of chromosomes in the embryo-sac of Rosa canina L. Euphytica, 18(2), 178-182.

1 - NIRDBS - Institute of Biological Research, Iasi, Romania
2 - University "Alexandru Ioan Cuza", Faculty of Biology, Iasi, Romania
3 - University of Sciences, Bacau, Romania

* - trutaelena@yahoo.com

Acknowledgments. The research was supported by project 52-142/15.09.2008 from PNCD II national research program (2009-2011)

