MOLECULE PHYLOGENETIC ANALYSIS OF GENE ENCODING ASPARTATE AMINOTRANSFERASE

XIAOSHENG DING¹, HONGYING DUAN^{1*}, YANQING ZHOU¹, JIANYING SONG¹, CHUNE ZHOU¹

Keywords: Aspartate aminotransferases, bioinformatics, phylogenetic tree

Abstract: Aspartate aminotransferases is an effective catalyst in the amino-transformation rection, and plays an important role in the metabolism of carbon and nitrogen in cells. In this study, the conserved genes encoding Aspartate aminotransferase in different species were analyzed by bioinformatics, and found gene (AAF19543) from *Arabidopsis thaliana* shows obvious comparability with those from some species in Dicotyledon and Monocotyledon. Furthermore, The phylogenetic tree showed that these species analyzed were divided into two branch, one branch was composed of Protist, Eukaryotes, the other consist of *Pan troglodytes* and *Tribolium castaneum*, and the Eukaryotes was further divided into two branch, which is mostly consistent with biology system.

INTRODUCTION

Aminotransferases was firstly found in 1930, could transfer the amido from α -amino acid to α -keto acid, and then catalyze the synthesis and hydrolysis (Francisco et al., 1991; Puppo et al., 1992; Mavrides and Orr 1975; Gall et al., 1983). Aspartate aminotransferases belongs to Aminotransferases A, currently is found in animal, plant and microbe, and exhibits significant catalysis in the metabolizing process of nitrogen and carbon. When pyridoxal phosphate is its coenzyme, Aspartate aminotransferases catalyzes the reverse reaction between do-carboxyl amino acid and α -keto acid (Christen and Metzler 1985), therefore the functions of Aspartate aminotransferases are very abroad, mostly participates in convergency, transfer and stockpile of nitrogen, and the synthesis and hydrolysis of amino acid.

At present, the theory research of Aspartate aminotransferases is performed in the molecular level (Jager and Pauptit 1994). Along with development of biology technology, the catalyse mechanism Aspartate aminotransferases is studied by molecule simulation, and then instruct its reconstruction and reasonable design. In this article, the gene encoding Aspartate aminotransferases in various species was analyzed by bioinformatics in order to provide reference for further theory and application studies of Aspartate aminotransferases.

MATERIALS AND METHODS

Materials

The gene encoding Aspartate aminotransferases was screened in http://www.ncbi.nlm.nih.gov/blast/Blast.cgi, its GenBank accession number and source from different sources were shown in Table 1. In this article, the amino acid sequences of Aspartate aminotransferases were used to analyze the evolution relationship.

Methods

The amino acid sequence of every gene encoding Aspartate aminotransferases in Table 1 was analyzed by

DNAMAN software, and the gene tree was constructed to study the evolution relationship among gene encoding Aspartate aminotransferases in different species.

	9	GenBank accession
	Source	number
1	Arabidopsis thaliana	AAF19543
2	Populus trichocarpa	ABK95824
3	Vitis vinifera	CAO65506
4	Daucus carota	P28734
5	Lupinus angustifolius	AAA50160
6	Oryza sativa Japonica Group	NP_001044317
7	Glycine max	AAC50015
8	Panicum miliaceum	CAA45023
9	Medicago sativa	CAA43779
10	Lotus japonicus	CAA63894
11	Triticum aestivum	ABY58643
12	Apis mellifera	XP_396131
13	Securigera parviflora	AAL09704.
14	Chlamydomonas reinhardtii	XP_001695040
15	Dictyostelium discoideum	XP_646849
16	Solanum tuberosum	ABB55364
17	Xenopus laevis	NP_001080255
18	Phaseolus vulgaris	AAN76499
19	Xenopus tropicalis	NP_001016933.
20	Ornithorhynchus anatinus	NP_001016933.
21	Lotus corniculatus	AAC12674.
22	Ustilago maydis 521	XP_756742
23	Oryza sativa	AAO23563
24	Macaca fascicularis	Q4R559
25	Tribolium castaneum	XP_969549
26	Drosophila pseudoobscura	XP_001356945
27	Mus musculus	AAB91426
28	Monodelphis domestica	XP_001376001

Table 1 The source and GenBank accession number of gene encoding Aspartate aminotransferases

	Source	GenBank	accession
		number	
29	Yarrowia lipolytica CLIB122	XP_500415	
30	Rattus norvegicus	NP_037309	
31	Bos taurus	NP_777231	
32	Macaca mulatta	XP_001103601	
33	Cryptococcus neoformans var. neoformans JEC21	XP_568414.	
34	Pan troglodytes	XP_523381	
35	Gallus gallus	7AAT_A	
36	Pongo pygmaeus	Q5REB0	
37	Sus scrofa	NP_999093	
38	Danio rerio	NP_998544	
40	Canis lupus familiaris	XP_535278	
41	Homo sapiens	AAH00525	
42	Laccaria bicolor S238N-H82	XP_001873821	
43	Sus scrofa domestica	0308236A	
44	Malassezia globosa CBS 7966	XP_001731601	
45	Tetrahymena thermophila SB210	XP_001017054	
46	Pan troglodytes	NP_001092011	

RESULTS AND DISCUSSIONS

The amino acid sequence of Aspartate aminotransferases (AAF19543) from *Arabidopsis thaliana* was used to search databank by BLAST, and obtain conserved gene encoding Aspartate aminotransferases from various species. These amino acid sequences of Aspartate aminotransferases from different species were compared by DNAMAN, and discovered that Aspartate aminotransferases (AAF19543) from *Arabidopsis thaliana* shows obvious comparability with some species belonging to Dicotyledon and Monocotyledon, 71%~75% or so. In order to further analyze the evolution relationship among these genes, the phylogenetic tree was constructed with amino acid sequences of Aspartate aminotransferases by DNAMAN. As shown in Fig. 1, the phylogenetic tree was divided into two branch, one branch was composed of Protist, Eukaryotes such as plant, animal and fungal, and the other consist of *Pan troglodytes* and *Tribolium castaneum*. Moreover, the Eukaryotes was further divided into two branch, one was made of green alga, Dicotyledon and Monocotyledon belonging to Angiosperm, and according to the evolution relationship, the other branch consist of in turn some species belonging to Protozoa

such as Dictyostelium discoideum AX4, Yarrowia lipolytica CLIB1229, Ustilago maydis 521, Malassezia globosa CBS 7966, Cryptococcus neoformans var. neoformans JEC21 and Laccaria bicolor S238N-H82, Drosophila pseudoobscura and Apis mellifera in Phylum Arthropods, and animals in Craniota.

Furthermore, it was found in the phylogenetic tree that the relationship between *Pan troglodytes* (NP_001092011) and *Hono sapiens* is far, and the comparability is 48.9%, but Pan troglodytes (XP_523381) exhibit higher similarity with *Hono sapiens*, 99.5%. The amino acid sequence of NP_001092011 and XP_523381 was further compared, their similarity is merely 48.6%, which probably shows that *Pan troglodytes* NP_001092011 and XP_523381 are paralog. Wherease, *Pan troglodytes* (NP_001092011) and *Tribolium castaneum* (XP_969549) were clustered together, and exhibit parallel relationship with other species. Therefore, it is presumed that gene (NP_001092011) in *Pan troglodytes* might be evolved from gene (XP_523381). In addition, based on the phylogenetic tree, we also found *Tetrahymena thermophila SB210* belong to Protozoa which is the furthest primal phylum in animal kingdom, *Dictyostelium discoideum AX4* which is one kind of amoebae locates in the bottom of Matazoa, and fungi has closer relationship with animal than plant.

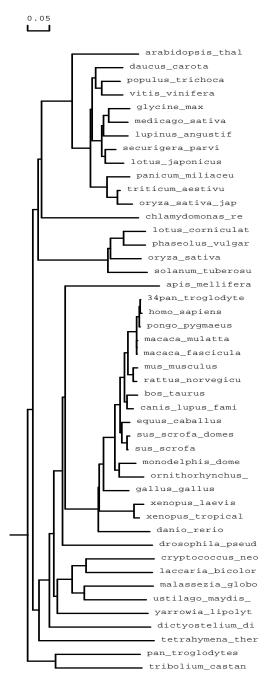


Fig. 1 The phylogenetic tree was constructed based on amino acid sequences of Aspartate aminotransferases from various species, the scale bar represents the branch length.

REFERENCES

Christen, P., Metzler, D. E., 1985. Transaminases, pp102-202.

Francisco, J. G., Maria, C., Angel, M., 1991. Biol. J., 278(15), 149-154.

Gall, I., Erzsebet, K., 1983. Acta. Biol., 29(1), 3-10.

Jager, J., Pauptit, R. A., 1994. Protein Engineering, 7 (5), 605-612.

Mavrides, C., Orr, W., 1975, J. Biol. Chem., 250(1), 4128-4133.

Puppo, J., Forja, J. M., Blasco, J.: 1992. Comp. Biochem. Physiol., 247(8), 2486-2492.

1 The College of Life Science Henan Normal University, Xinxiang 453007 China

* dxdhy@126.com

Acknowledgments: This study was supported by Science Fund of Henan (2008A180015, 2008B180007, 08N042, 082300430270, and 082102120019), and funds of Henan Normal University (06114 and 2007034), P. R. China