BIOSORPTION IN TREATMENT OF WASTE WATER

LAVINIA TOFAN1), DANIELA SUTEU1), LAURA BULGARIU1), OVIDIU TOMA2)*

Keywords: biosorption, depollution, biosorbent, biomass, algae, enzyme, pollutants compounds.

Abstract: The imperative of environment protection brings out the biomass use in recovery of toxic or valuable metals from diluted effluents. This fact is due to biosorption, which is more efficient in retention of cations present at low concentrations in aqueous solutions, than the conventional treatment, involving reduced energetic consumptions too.

INTRODUCTION

Assurance of life quality represent an imperative for super industrialized modern society, which must to offer the biotechnological, ecological and efficient alternatives, in conditions of very high demographic explosion, the exhaustions of basic materials sources, the pollutants diversification and increase of environmental pollutions. Don’t to have to ignore that the ecological risk products have the complex structures and compositions, are present in small among, of \(\mu \)g order, and have an accumulative toxicity during of the time [Gorduza et al, 2002; Tofan et al, 2002].

In this context are imposed the strict laws for environmental protection like, for example, the normative referring to quality of drink water (table 1.) [Strat, 1995].

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>(C, \mu g/ L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>5</td>
</tr>
<tr>
<td>Hg</td>
<td>1</td>
</tr>
<tr>
<td>Pb</td>
<td>50</td>
</tr>
<tr>
<td>Pesticides and related</td>
<td></td>
</tr>
<tr>
<td>compounds</td>
<td>0.1</td>
</tr>
<tr>
<td>Polycyclic aromatic</td>
<td>0.2</td>
</tr>
<tr>
<td>hydrocarbons</td>
<td>0.5</td>
</tr>
<tr>
<td>Insecticides, herbicides, fungicides</td>
<td></td>
</tr>
</tbody>
</table>

The chemical species presented in trace concentrations are important due their associations with discharges in environment and with health of plants, animal and peoples.

In many cases, the difference between the essential concentration and the concentration of some elements in environment, critical depends by suitable drawing and analysis of samples with attention focus by minim contamination, the utilization of some suitable reference materials and the correct selection of analytical methods. It can affirmed that interest manifested for trace elements is due their dual role in plants, animal and people health, namely their essentiality and their potential to be dangerous (figure 1) [Gorduza et al, 2002; Prichard et al, 1996].

The environment understanding by scientists is very important as well as their knowledge about the identity and the quality of pollutants and of another chemical species from water, air, soil and biological systems. Therefore, the actual techniques of chemical analysis, suitable utilized, are essential in environment analysis.
1. BIOSORPTION

The utilization of biological materials in technological practice for metals holding from wastes waters is relative new. The biotechnologies involves low est price, offer the ecological solutions for toxic metallic ions recovery [Brown,1991]. The natural supports, generate by plants, mushrooms and microorganisms from soil or waters, is biodegradable, being integrals in carbon cycles and compatible with environmental autoregulation processes [Gorduza et al,2002].

The new technologies of waste waters treatment to refer to microorganisms capacity of metallic ions sorption and has imposed the elucidation of some aspects, like: the interactions between ligands from walls cell and metallic ions, the kinetics of retention process and the thermal effects of biosorption.

The frequent applied methods, in waters depoluation (the precipitation, the oxidation, the reduction, the ion exchange, the filtration, the electrochemical treatment, the reverse osmoses, the recovery by evaporation and the solvent extraction) not assure the complete remove of metallic ions, need the high consumption of reagents and energy and to end appear formation of mud and toxic secondary products, for the contaminants concentration by 10-100 ng/L [Singleton et al,1995]. In this context, the biosorption represent an alternative to the elimination existent technologies of compounds with ecological risk.

The thermal effect estimation of biosorption involved the activation energy determination of microorganism – metals systems, use the adsorption constant rate and the Langmuir constant. The thermal effects size of biosorption process can represent an important criterion for kinetics and thermodynamic approach of interaction from microorganism – metal system.

The imperative of environmental protection to bring in attention, the utilization of biomass in toxic or valuable recovery from dilute effluents, because the biosorption is more efficient in retention of cations existed in low concentration from aqueous solutions, than conventional treatments by ionic exchange, and has low energy consumption.

The exhaustion of metals resource to bring in actuality, the application of biological treatments for concentration and recovery of some metals with industrial utilizations, using the microorganisms obtained by techniques of genetic engineering [Brown, 1991]

The application of biological methods and for other metals, about Cu, U and Au depends by economical factors and by used strategy. Due their value and importance, is very important the recovery of metals as: Mo, Co, Pb, Zn and Ni. The success of microbiological methods in waste waters treatments depends by factors as: the in situ depolution capacity, the low energy cost, the reduced investigation expenses, the ability to transformation of residual products in resource, the favorable impact with environment and the moderate operation conditions.

2. THE SUPPORT MATERIALS USED IN BIOSORPTION

2.1 THE BIOMASS

The biomass represent on unity, potential carried of reused substances and energy, which correspond to the total quantity of carbon and nitrogen, incorporated by biological processes, in organic polymeric material. The principal, components of biomass are: cellulose, hemicelluloses, lignin and starch (figure 2) [Batt, 1991].

The biomass have much biotechnological and ecological utilization.

The main source of biomass is represent the plants, with an annual production by about 10^{11} tons and is a result of photosynthesis. Thus, the biomass is a regenerative resource. The biomass is refer to agricultural and chemically biomass (phytomass) [Encyclopedia,1988].

![Figure 1. The effect of trace element concentration](image-url)
The phyto mass included: lignin – cellulose biomass, consist in wooden plants, starch and inulin biomass, the aquatic biomass, biomass obtained as agricultural refuse, domestic biomass, used in technologies for biogas obtain.

The biomass composition depends by origin, and from this reason the conversion processes in substrate with concrete utilizations, is very complex.

The biomass is used as:
- Substrate in recovery/decontamination processes of waste waters;
- Substrate or cultural media in fermentation process.

The biomass utilization as substrate depends by:
- low cost price for conservation and transport from biomass source to utilization place, utilization of residual biomass as substrate in other technological process for to decrease the cost, the concentration and selective retention capacity of metallic ions from solutions to low concentrations (< 1 ng/L), ensured the recirculation potential for metal recovery [Batt, 1991].

The biomass capacity of wastes waters treatment is manifested in mechanisms as: chelatization, solubilization initiated by protons, formations of inorganic complexes, ionic exchange and dissolution of metals bond of substrate by reduction reactions, but the important contribution have the chelatization.

The biosorptive interactions between biomass and cations have applications in water decontamination from nuclear, photographic and extractive industries, the retained metal is desorbed after.

The metal complexation with extra cells polymers and with the polymers from cell walls permitted to the microorganisms to survive in aqueous media, which contain an among of metal over admits toxicity limits [Brown, 1991].

Above 98% from present metal in aqueous solution can be adsorbed by biomass, and to provide the possibility to metal recovery from wastes waters.

In general, the metal adsorption systems on biomass is characterized by high value of ratio between the wet volume and dry mass, than the ionic exchange systems which is more less efficient in case of high flow of solution. The utilization of these materials permitted the diminution of metal concentration in final effluent, and is recommended in the final treatment process, in succession with the conventional treatments.

By lyophilized biomass of Saccharomyces cerevisiae, produced in beer industries can be retained the silver ions from aqueous solutions, by covalent bond mechanism, which involved the substitution of some protons from biomass [Singleton et al, 1995].

Actinomyces manifest biosorption affinity for metals due the present anionic groups in cell wall. The microorganisms in contact with solutions which contain mixture of metallic ions, accumulate different the cations, in variant limits (table 2). An example is represented by the utilization of refuse by micelles from antibiotic industries for rare earths separations, by sorption to pH = 2 – 6 [Hancock, 1986].

Some microorganisms have de-toxicity and metals transformation effects. Thus, Hg, Pb, As, Au, Sn, Pt, Se can be mitigated, while Te, As, V, Mo, Hg can be reduced by Micrococcus sp. in some cases until to free metal step [Brown, 1991].

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Metallic ion</th>
<th>pH</th>
<th>Capacity, mg/g dry material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>Cu, Cd, Co</td>
<td>6.2</td>
<td>25.4/19.1/6.5</td>
</tr>
<tr>
<td>Streptomyces</td>
<td>Zn</td>
<td>-</td>
<td>2.9</td>
</tr>
<tr>
<td>Actinomyces</td>
<td>Ag/Cd/Co/Cr/</td>
<td>6.0/6.5/5.8/5.5/5.9/6.1/5.8</td>
<td>38.6/3.4/1.2/10.6/9.0/8.36/5/1.6</td>
</tr>
</tbody>
</table>

Table 2. The retention capacity of some microorganisms
The Escherichia coli bacterium reduced the mercury ion (Hg(II)) to metallic mercury, which then diffused from cells and are volatilized in atmosphere. The Micrococcus luteus immobilize Pb in his cell walls, less than 1% from retained lead ions being accumulated in cytoplasm [Cripps et al, 1990].

The polysulphonate biomass is selective for heavy metals, thus that from waste water can be removed more than 99% from present amounts of Zn, Cd and Mn ions, than 9% for Ca(II) and 4% Mg(II), respectively [Brown, 1991].

The radium adsorption by Penicillium chrysogenum is more 14 times higher than the conventional system capacity of ionic exchange.

By dry biomass, which contain the Pleurotus patrua mushroom Cd(II) can be retained, to pH=5.5-6 [Cibangri et al,1999]. The biomass which contain two mushrooms from Mucorales class, are cultured in laboratories, or eventual immobilized with Rhizopus arrhizus, and other extracted from Mucor miehe industrial refuses retain Cu (II) from solutions [Beady et al,1999]. By a biomass obtained from bacteria’s (Buccilus subtilis), mushrooms (Penicillium chrysogenum) and marine plants (Sargassum fluitans), the gold is extracted cyanuric solutions, to pH=2, the retention capacity being 3.2–8 μmol/g [Niu et al,1999]. By a biomass, which contain Streptomyces rimous, Penicilinium chysogenum and Saccharomyces carlesbergensis and Saccharomyces cerevisiae drugs can be realized the biosorption of Zn, Co and Ni, in presence of Ca and Na ions, and the results is superior than the results obtained by filtration, centrifugation or flotation techniques [Zouboulis et al,1999].

The biomass inactivation by thermal or with solvent treatments determined the misrepresentation of basis material and has obtained the inactive biomass (for example the dead Actinomycete bacteria’s, by Streptomyces γ ped) [Batt,1991; Matis et al,1997]. The inactive biomass can have more high adsorption capacity, than no distort material, being more densely and many times recyclable. Thus, the inactive cells by Thiobaillus ferrooxidans can adsorb with 10–40% much more uranium than the live cells [Batt,1991].

The most metal remove techniques from effluents use the biomass generated as secondary products or as refuse from industrial process.

- The residual biomass can be by three types [Gorduza et al,2002]:
 - the liquid refuses with combined aliphatic carboxylic acids and amino-acids (effluents from time of harvests ensilage or from to horned reproduction farms);
 - the solid refuses, with high contend of proteins and peptides, represented by meal from blood, refuses of carcasses from slaughter-house, etc;
 - the solid refuse characterized by high amon of carboly drates –molasses from sugar fabrication.

The residual biomass can be utilized as such, chemical or physical modified, by oxidation and hydrolysis, respectively.

An accessible and cheap source of biomass for metals recovery is represented by the pharmaceutical and food industries, by microorganisms used for enzymes and antibiotics products, respectively (table 3). The biomass can be obtained from diverse microorganisms: mushrooms, algae [Simmons et al,1995; Singleton et al,1995]; bacteria’s [Batt,1991], microorganisms, isolated from different media: soil, waters, mud, plants, rocks [Eccles, 1997].

Utilization of industrial residual biomass as sorptiv material, increases the microbiological technologies profitableness. For example: the dregs residual biomass represented an important material source with biosorptive properties, is cheaper, easy for recuperate to end of fermentation and produced in high amon.

Table 3. The microorganisms used in metals bioaccumulation

<table>
<thead>
<tr>
<th>Element</th>
<th>Microorganisms capable for bioaccumulation</th>
<th>Microorganisms capable for bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Aspergillus niger</td>
<td>Lead, molybdenum</td>
</tr>
<tr>
<td>Arseniu</td>
<td>Damiella sp.</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Zoogloea ramigera</td>
<td>Nickel</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Pseudomonas</td>
<td>Palladium</td>
</tr>
<tr>
<td>Cooper</td>
<td>Chlorella regularis</td>
<td>Radium</td>
</tr>
<tr>
<td>Gold, platinum</td>
<td>Cladosporium resinae</td>
<td>Selenium</td>
</tr>
<tr>
<td>Hafnium, zirconium</td>
<td>Chlorella vulgaris</td>
<td>Silver</td>
</tr>
<tr>
<td>Indium, mercury</td>
<td>Klebsiella aerogenes</td>
<td>Strontium</td>
</tr>
<tr>
<td>Indium, mercury</td>
<td>Escherichia coli</td>
<td>Thorium, uranium</td>
</tr>
<tr>
<td>Indium, mercury</td>
<td></td>
<td>Iron</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Microorganisms capable for bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead, molybdenum</td>
<td>Spirogrya sp.</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Gallionella sp.</td>
</tr>
<tr>
<td>Nickel</td>
<td>Chlamydolomas sp.</td>
</tr>
<tr>
<td>Palladium</td>
<td>Thiobacillus ferrooxidans</td>
</tr>
<tr>
<td>Radium</td>
<td>Penicillium chrysogenum</td>
</tr>
<tr>
<td>Selenium</td>
<td>Pseudomonas sp.</td>
</tr>
<tr>
<td>Silver</td>
<td>Anaerobic sludge</td>
</tr>
<tr>
<td>Strontium</td>
<td>Citrobacter sp.</td>
</tr>
<tr>
<td>Thorium, uranium</td>
<td>Rhizopus arhizus</td>
</tr>
<tr>
<td>Iron</td>
<td>Leptothrix sp.</td>
</tr>
</tbody>
</table>
2.2 THE ALGAE

The algae, representative of marine flora, is characterized by high polysaccharides content, beside of proteins, minerals, etc. The algae, represented a source for human and animal food, agriculture fertilizer, basis material for the food, pharmaceutical and cosmetics industries. Some marine algae can be utilized in depollution of contaminable waters with toxic organic and inorganic substances [Simionescu et al,1974].

The marine algae chemization processes depend by the following factors: alga species, zone and season of harvest depositing conditions. By organic compounds from algae is remark [Gorduza et al,2002]:
- Poly saccharides;
- Cellulose, manna, xyln, in proportion of 2.5-95 %, similarly with land plants;
- Alginic acid, laminarin, fucoidin, agar, carrageen, in proportion of 7-34 %, specific the algae and with structural and physiological functions;
- Cyclic-polyol (D-mannitol), in proportion of 6.86- 24.33 %;
- Vitamins: B2, B12 , A, D, C, PP, H;
- Proteins, sterides, flavonoides, poly phenols and ureides, in proportion of 12.3-35.6 %;
- Pigments in form of chromoproteides (chlorophyll’s, carotenoides).

The algae cells can absorb metals from natural aqueous media or industrial effluents. Some types of algae manifested affinity for Au, Hg, Ag, U, Zn, Cd and Cu. The retention capacity of metals is attributed to ionic exchange mechanism, but are not excused and the covalent binding [Christ et al,1990].

The RMN spectroscopy applications for retention mechanism elucidation for Cd, adsorbed by on algae, indicated the covalent binding of constitutive carboxylic groups [Majidi et al,1990].

To cation adsorption by algae has observed that the constitutive carboxylic groups are implied in Cu and Al binding, but these not interfere in Au retention [Gardea-Torresdey et al,1990].

To gold retention by *Chorella vulgaris*, Au(III) is bond to S atom and/or N, [Pittet et al,1999] being observed and the competitive biosorption of Cr(VI) and Fe(III) ions [Aksu et al,1997].

3. THE BIOSORBENTS

The biomass utilization in depollution technologies, in chromatographic column respectively, has determined the immobilization of these by different types of supports, with variable forms and porosities, that guide to a new class of sorbents – biosorbents [Matis et al,1997;Jeffres et al,1997]. The biosorbents can be used in complete treatment of refuels, or in finishing treatment, associated with another materials, like active coal.

For to remove the cadmium ions, for example, from aqueous media are need the following steps [Matis et al,1997]:
- the biosorption of metallic ions by direct contact between wastes water and biosorbent;
- the separation by filtration, sedimentation, centrifugation or flotation of the biomass;
- the elution from biomass of retained cadmium ions;
- the reutilization of biomass and of eluent.

Such process not have an suitable efficiency, being recommended the immobilization technologies, where the biomass is converted in other form which can be utilizable, similar with the ionic exchangers. For example, to biomass inclusion in chitosan granules, the magnetite added are indicated, for to separation facility [Rorrer et al,1993].

The biosorbents is efficient for to metallic ions remove from aqueous media, in presence of organic compounds or dissolved salts, which is considered poisons for to ionic exchange resins and have the sorption propriety superiors in comparison with conventional materials from final treatment of effluents. The biosorbents remove selectively, heavy metals ions from waters, which have high concentration of K(I), Na(I), Ca(II), Mg(II) and of Cl , SO\textsubscript{4}2- anions [Gorduza et al,2002].

In comparison with some commercial ionic exchanger resins, the polysulfone granules which contain a biomass based by green –blue alga can be of 4 times more efficient in Zn and Mn adsorption, to a initial concentration of 5 mg/ L and 1 mg /L respectively, in time what the ionic exchanger resins are applicable to cations concentration more than 18 mg/L. The granules with immobilized alga can extend 90% of cadmium quantity from waste water, which contain 45 μg Cd/L, in time what the ionic exchange resins adsorb only 15 – 45 % [Batt,1991].

The biosorbents efficiency in effluents depollution process from uranium extractive industry was estimated, comparitively with IRA –400 resin ethalon. Thus, the *A. niger* tablets adsorb, to pH= 4, 14 times
more uranium, and the *Rhizopus arrhizus* biomass retain uranium by 4 times more then the resin. By *Rhizopus arrhizus* was obtained and the following values of retention capacity: 0.089 g Pb/g; 0.056 g Ni/g; 0.054 g Fe/g; 0.026 g Cu/g [Gorduza, et al, 2002].

Are to interest the biosorbents obtained by preparative methods associated with sequential modification, by genetic engineering technologies. Thus, by microbiant synthesis can be introduced in Streptomyces cerevisiae and in Escherichia coli, clones of natural and synthetic genes [Gorduza, et al, 2002].

3.1 THE BIOSORBENTS FROM BIOMASS AND ALGAE

By treated of *Bacillus subtilius* biomass with alkali can be obtain an granule biosorbent, with an increase retention capacity of metals cations: 0.8 mmol Ag/g; 1.9 mmol Cd/g; 2.1 mmol Zn/g; 2.4 mmol Cu/g; 2.9 mmol Pb/g, respectively, the retention capacity being more than 99 % [Broon et al, 1994].

The *Actinomyces* bacterian cells can be encapsulated in different matrices and permit to obtain a biosorbent which can be utilizable as biological component in tests for 1, 3 – dichlorpropene and 1,2 – dibrommethane from water [Broon et al, 1994].

The immobilization of *Zoogloea ramigera* in calcium alginate and the reticulation of resulted material, by treated with 1% triethylenetetraamine and 1% glutaric dialdehyde lead to on biosorbent with superior properties than the inreticulated biosorbent, with a high mechanical resistance and cadmium adsorption capacity, even after 30 adsorption – desorption cycles [jin et al, 1999].

An biomaterial, recent tested is the membrane from hen egg shell (MCOG), which manifest affinity for some metals (table 4). The retention of metallic ions with toxic potential is make by thiol and disulfure groups of this biosorbent [Eccles, 1997].

<table>
<thead>
<tr>
<th>Table 4. The retention capacity of (MCOG) for some metals (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Capacity</td>
</tr>
</tbody>
</table>

The algae immobilization by supports lead to efficient biosorbents in heavy metals remove from waters with organic refuse, which poison the ionic exchanger resins [Brown, 1991]. The obtain of biosorbents by algae basis is an application interest problem. The algae immobilization in polymer matrix determined an increase of 10 times of concentration capacity for heavy metals ions from waste waters, with a g/L order concentration. As support for algae immobilization are use: polyacrylamide gel, polyuretain foam and calcium alglate reticulate gel, which lead to obtain of some biosorbors applicants as filters and efficient in toxic metallic ions (Hg) recovery from aqueous media [Gorduza et al, 2002].

Are to interest the biosorbents obtaining by immobilization of algae cells to macromolecular supports, like: copolymer (ethyl acrylate – ethylene glycol dimetacrylate), polyacrylamide gel, polyuretain foam and reticulate gel of calcium alglate [Harris et al, 1990; Fry et al, 1993].

As inert support for biopellices can be use and the granulate active conl. Thus, a *Pseudomonas sp.* biofilm by granulate active coal have the capacity to adsorb 0.85 mg Cu/g; 0.75 mg Zn/g; 0.04 mg Ni/g and the adsorption capacity for herbicides (antazine) [Malan et al, 1992].

The maxim retention capacity of Cu from aqueous media, in concentration of 0.53 g/L is 0.323 g Cu/g of *Z. ramigera* dry cell, in static conditions. In continue process, the retained quantity decrease to half, due biomass flocculation, before as Cu ions to occupied the centers with adsorption potential. Was obtained the following values for retained quantity per g of *Z. ramigera* dry biosorbent: 0.085 g Pb; 0.067 g Fe(III); 0.054 g Ni; 0.035 g Cu [Sığ et al, 1995].

31
4. THE ENZYMES IN WASTE WATERS TREATMENT

The physical (adsorption) and chemical (oxidative methods) treatment processes have the limited selectivity and depollution efficiency, being conveyable for treatment of waste waters, with a low contends of chemical pollutants compounds.

The choice of some refuse treatment process suppose the evaluation of some factors, such: technical and economical feasibility, but and the absence of ecological risks [Aitken,1993].

In place of methods which transform the compounds with toxic potential from a phase in other, like the transfer of volatile organic compounds from waste waters in atmosphere, are preferred the destruction proceedings of pollutants materials the proceedings of selective removing of pollutants, the nontoxic material mass being biological treated.

The enzymes utilization offer alternatives for refuse treatments by which can be realized on selective remove of pollutants [Grumman,1970]. These depollution preceding is based by chemical reagents specificity for certain substrate or for appropriate compounds, what permit utilization of chemical reagents which assure the stoichiometrical efficiency and eliminated the secondary reaction risk, in reproducibility and economical conditions.

The enzymes actuated on “recalcitrant” pollutants for their removed by precipitation or by transformation in outer products, which reduce pollution action, or which can remove by classical proceedings [Nicell, 1997;Aitken et al,1987]. The enzymes utilization are indicated in the following cases [Bollag, 1992;Bollag,1992]:

- remove of specific chemical products from complex mixture of refuse, before these to be subdue of biological treatment;
- remove the chemical compounds hared in low concentration in mixtures, for which cannot be applied the biological treatment by mixt culture;
- the final treatment of waste waters, after pretreatment;
- the treatment of occasional refuse , after deversation in isolate places;
- the treatment of small volume of waste waters, but with high concentration in deversation point, for to avoided some interaction with pollutants materials from other installations;
- the “in situ” transformations with enzymes of pollutants from soil or substrain contaminated waters.

The advantages of enzymes utilization in treatments of pollutants can be considered realizable from technical and economical point of view, if the reaction products have a decrease toxicity degree and a biodegradability more advanced than the products resulted by other treatments. Than, the enzymes utilization objectives is the diminution of pollutants toxicity, but are showed and the increase of toxicity cases [Aitke et al,1987; Bollag,1992].

The enzymes attack selective the chemical compounds by refuse mixture. The enzymes specificity was verified by laboratory studies referring to selective oxidation of 2,4-diclorphenol, in low concentrations, in presence of other organic species, follow of extension of method to treatment of waste waters [Gorduza et al,2002].

The reactor for enzymatic depollution are the conventional, homogenate, mixt (with discontinue, semicontinue or continue working). The selection of reactor type implied: economical analysis, the establish of reaction kinetics and to knowledge of enzyme inactivation mechanism.

The cost is a decisive element in enzymatic depollution process, but exist and enzymes for which the economical factor is not priority. Thus, the enzymes which required cofactors as: adenosine – phosphates (ATP; ADP), pyridine –nucleotides (NAD; NADP) or their reduced forms (NADH, NADPH) is not indicated for practical applications, without to be elaborated the retention and regeneration methods for cofactors. The enzymes cost must be low, because these is destroy ed after a suitable time of utilization. Can be utilized the enzymes immobilized by a cheaper support, which can be recovered after on some operation period. The enzymes, commercial available, must be stable in time and in reaction conditions, the inactivation price have influence on the process cost [Wandney et al,1985; Ilemind et al,1990].
The industrial interest enzymes are the extracells, which required the simple proceeding of prelucration for can be commercialized and which is produced by inactive cells or by organisms obtained by DNA recombination techniques [Aitken, 1993]. Exist a series of microbian enzymes for pollutants transformation by “in vivo” catalytic process, but which cannot be extended to industrial scale.

The most studied, due the manifested specificity in refuse treatment are hydrolases for organophosphoric pesticides and oxidant enzymes for phenols (laccase, peroxidas and polyphenol-oxidas).

The proctese and conversion enzymes of amidon have the commercial disponibility, but the data referring to the ecological applications is not concluding. These enzymes are used in bettering of refuse biological treatments which proceed from food industry or for solide substrate conversion (shedges) in soluble and easy biodegradable organic compounds. The Trispine solubilized solide material proceeded from waste waters treatment installations, and extra cells enzymes, proceeded by Streptomyces species, transform the polyethylene fraction of degradable plastics. The bacteria exopolysacarides can be degraded by a depolymerase to improved the deshydration capacity of residual biomass from biological treatment processes [Gorduza et al, 2002].

The enzymes inactivation is a important element in feasibility appreciatation of refuse treatment. The enzymatic inactivation involve: thermal denaturation, the lost of prosthetic group, the phases transfer, the mechanism b y inactivation basis (suicide) and reverse inhibition. In aqueous solution, the proteins are susceptible to thermal degradation, which is solded with reversible or irreversible lost of enzymatic activity, sometimes with formation of some partial active intermediaries. The denaturation process is controlled by increase of enzymes concentration or by added in reaction system of some species with high molecular mass: seric albumin, gelatin, polyalcohols or polyethylenglicol [Gorduza et al, 2002].

In cases of enzymes produced by genetic modified organisms, the thermostability improved involve the substitution of specific sequent of aminoacids. The thermostability can be improved by utilization of enzymes in organic solvents, the method being applied for peroxidas by horse radish, poly phenol-oxidas, some immobilized enzymes as hydrolase immobilized for organo-pesticides.

Then, exist some difficulties to enzymes applications in refuse treatment, has been evidenced situation in which the enzymatic depollution is a selective solution.

CONCLUSIONS

The biological processes can replace the conventional depollution technologies which are ecological risk, very much as can be applied in finishing treatments in traditional processes, for alignments to wants of new field legislation.

The biological recovery advantages of metals offer premises for extension to applied the biological treatments processes in metal extraction and to prelucration industry, for recovery of metals which is lost in effluents and in sterile, for to reconsideration of metals reserves.

The exhaustion of metal resources uptades the biological treatment application to concentration and recovery of some metals with industrial uses, using microorganisms generating by genetic engineering techniques.

The succes of microbiological methods in wastewaters treatment depends on factors such as: the capacity of in situ depollution, low energetic costs, reduced investment expenses, ability to convert a waste into a resource, favourable impact with environment and moderate operating conditions.

REFERENCES

Enciclopedia de Chimie, Editura Ştiinţifică şi Enciclopedică, Bucharest, 1988

Peter J., Buchinger W., Acta Biotechnologica, 17(2), 1997, 123.

1) The “Gh. Asachi” Technical University, Faculty of Industrial Chemistry, 71A, D. Mangon Bvd., Iași-10, P.O.Box 483, Romania.
2*) The “Al.I.Cuza” University, Faculty of Biology, B-dul Carol I, 20A, 6600, Iași, Romania; e-mail: otom@uaic.ro